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Using three approximation methods, nonlinear models have been derived for short and long
cylindrical squeeze "lms with arbitrary inner cylinder motions. Elliptical and parabolic velocity
pro"les are employed in the derivation in order to determine the e!ects of the choice of velocity
pro"le. The only di!erences in the "nal squeeze "lm equations, due to the three approximation
methods and the two velocity pro"les, are in the four constant coe$cients. Each term in the
squeeze "lm equations is a nonlinear function of cylinder position. Comparing the present
nonlinear expressions with existing models for short cylindrical squeeze "lms shows that the
force terms are either exactly the same or have the same trends with instantaneous eccentricity
values. For long cylindrical squeeze "lms, the present expressions have some force terms which
are essentially the same as in other studies, while other force terms show variations with
position which are very di!erent from a previously published study. ( 2001 Academic Press
1. INTRODUCTION

CYLINDRICAL SQUEEZE FILMS are important to design and maintenance engineers working
with squeeze "lm dampers in rotating machinery, as well as other industrial applications
such as shell-and-tube heat exchangers, because of the increasing demand for mechanical
systems (for example, in the nuclear power industry) to have long life and satisfactory
operating performance. The study of squeeze "lms, generated in a #uid-"lled clearance
between a cylinder (tube) and a cylindrical sleeve (support) when the cylinder oscillates, is
important for the prediction of the cylinder motions, contact forces and the rate of fretting
wear (Pettigrew & Ko 1980). The damping provided by the squeeze "lms is the major source
of damping to limit the vibration induced by turbulent liquid #ow across the heat exchanger
tubes (Pettigrew et al. 1986).

To evaluate and improve the performance of the shell-and-tube heat exchangers, many
theoretical and experimental investigations on the squeeze "lm phenomena acting between
a tube and its support have been initiated in the past. The main contributors to this work
are Mulcahy (1980), Haslinger et al. (1990), Esmonde et al. (1992) and Lu & Rogers (1992,
1994, 1995).

Because of the common theoretical basis, the study of squeeze "lms between tubes and
support plates in heat exchangers is closely related to that of squeeze "lm dampers used in
rotating machinery. However, due to the di!erences in the structures and movement
0889}9746/01/010151#19 $35.00/0 ( 2001 Academic Press
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characteristics of the inner cylinder, most of the analyses in the literature of squeeze "lm
studies in heat exchangers consider "nite length "lm approximations and special consider-
ations are given to arbitrary inner cylinder motion. Two of the analytical approaches
available in the literature for modelling "nite-length squeeze "lms are: (i) to use length-
correction factors with a short axial #ow solution, and (ii) to use side-leakage factors with an
in"nitely long circumferential #ow solution. A relevant example of modelling "nite-length
squeeze "lms by using length-correction factors with a short "lm solution is given by Barrett
et al. (1980). Modelling "nite-length squeeze "lms by using side-leakage factors with an
in"nitely long circumferential solution, can be seen, for example, from the publications by
Warner (1963), San Andres & Vance (1987a) and Lu & Rogers (1994). Zhang & Roberts
(1996) also used the same or similar ideas to account for the length e!ects. The validity of
this way of forming the force equations is naturally dependent on the accuracy of the short
and long squeeze "lm models.

There are many publications of theoretical and experimental studies on squeeze "lm
dampers dealing with short and long bearing models. For short models, Tichy (1982)
presented an approximate analytical solution for squeeze "lm damper forces, which ac-
counts for the e!ects of #uid inertia and viscoelasticity. An earlier &&exact'' solution for
in"nitesimal oscillation amplitudes is extended to "nite amplitudes using the Rivlin}Ericksen
second-order #uid. In a later paper, Tichy (1985) experimentally studied short squeeze-"lm
bearing forces including inertia e!ects for squeeze Reynolds number (uc2/l) up to 13 and
eccentricity ratios up to 0)8. The ratio of length/diameter was close to 0)15. San Andres et al.
(1993) carried out an experimental study on squeeze "lm forces for a short squeeze "lm
damper with length/diameter ratio of 0)188. Zhang et al. (1993, 1994) and Zhang (1997) also
performed theoretical and experimental studies of short squeeze "lm dampers. The results
of the above studies were for applications with small to moderate squeeze Reynolds number
cases.

The signi"cant studies of squeeze "lm damper performance for long bearing cases are: (i)
small-amplitude circular-centred motions by Tichy (1984), San Andres & Vance (1987a, b)
and Jung (1990); (ii) periodic motions by Zhang (1997); and (iii) arbitrary motions by
El-Shafei & Crandall (1991). They all tried to include #uid inertia e!ects in the in"nitely
long squeeze "lms. In the "rst and the second categories only the transient inertia term was
considered (with the statement that convective inertia terms were all negligible relative to
the transient term). One of the very fundamental assumptions in the El-Shafei & Crandall
study is that the e!ects of the #uid inertia on the velocity pro"le can be neglected. Therefore,
the applications of their studies are also limited to the #uids with small to moderate
Reynolds number.

There are relatively few publications on the study of squeeze "lms between tubes and
support plates in heat exchangers. Lu & Rogers (1992) developed an equation for the short
length, cylindrical squeeze "lm forces with moderately large eccentricities based on
a squeeze "lm model for two-dimensional rectangular plates. Lu & Rogers (1994) developed
an in"nitely long cylindrical model with radial inner cylinder motions by using an averaging
procedure (across the "lm thickness) to include all inertia terms. Due to the large radial
clearance (typically R/c"30}50) and the low viscosity #uid used, the squeeze Reynolds
number in shell-and-tube heat exchangers is usually higher than that in squeeze "lm
dampers. Consequently, this di!erence in squeeze Reynolds numbers requires attention for
squeeze "lm studies in heat exchanger applications. Until now there is no theoretical study
dealing with in"nitely long squeeze "lms between a tube and a heat exchanger support plate
for arbitrary tube motions.

The objective of the present work is to develop both a short squeeze "lm model and an
in"nitely long model suitable for accurate prediction of the squeeze "lm forces between
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tubes and their supports in heat exchangers, with consideration of the various kinds of
inertia e!ects. The derivation of the short model is similar to that of Lu & Rogers (1995),
whereas for the long model, a new elliptical velocity distribution has been derived. The
results obtained using the di!erent velocity pro"les and three approximation methods are
compared with the existing models. The present paper is an expanded version of a confer-
ence paper (Han & Rogers 1997).

2. SHORT CYLINDRICAL MODEL

2.1. DERIVATION

Figure 1 shows the cylindrical squeeze "lm con"guration for the short model and the
coordinates used. The cylinder centre O@ has an instantaneous position (e, t) in the
stationary polar coordinate system, and n and t are moving unit vectors. The "lm thickness
at any angle h in polar coordinates is

h"c!e cos (/!t)"c!e cos h , (1)

see Nomenclature in Appendix B for variable de"nitions.
If we neglect the e!ect of the convective inertia of #uid entering and exiting the system,

the squeeze "lm pressure for the short cylindrical model is given by an expression derived
for rectangular plates (Han & Rogers 1996)
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The constant D
i
coe$cients depend on the choice of approximation method, the type of

#ow velocity pro"le, and also the pro"le factor A for the elliptical velocity pro"le as shown
in Tables 1 and 2. Di!erentiating the local clearance h twice with respect to time and
Figure 1. Con"guration of squeeze "lm for short cylindrical model with arbitrary cylinder motion.



TABLE 1
Constant coe$cients for parabolic velocity pro"les*

Pro"le Method D
1

D
2

D
3

D
4

Parabolic Momentum 12 1 2)4 1)2
Iterative 12 1 2)914 1)543
Energy 12 1 2)914 1)543

*The resutls of momentum and energy approximations using parabolic velocity
pro"le are from El-Shafei and Crandall (1991).

TABLE 2
Constant coe$cients for elliptical pro"les and di!erent

A values

Method A value D
1

D
2

D
3

D
4

Momentum 1 R 1 2)162 1)081
approx. 1)1 18)925 1 2)293 1)147

1)2 15)998 1 2)324 1)162
Iterative 1 12 1)125 2)479 1)297
approx. 1)1 12 1)17 2)719 1)435

1)2 12 1)18 2)775 1)466
Energy 1 R 1)081 2)364 1)216
approx. 1)1 12)682 1)147 2)657 1)389

1)2 12)308 1)162 2)731 1)432

154 Y. HAN AND R. J. ROGERS
substituting the results into the above equation yields the "lm pressure as a function of the
axial coordinate X and h,
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Taking p
a
as atmospheric pressure, we can obtain the squeeze "lm force acting on a very

small arc of the cylinder with width R dh:
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In the conventional way, the forces acting on the moving cylinder in the normal and
tangential directions can be obtained as
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TABLE 3
Geometry and force coe$cients of the short cylindrical model
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TABLE 4
Force coe$cients of the short cylindrical model for 2n "lms
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The normal squeeze "lm force expressed by equation (5) consists of four terms. The "rst
three terms are the viscous term, unsteady inertia term and convective inertia term,
respectively, and the fourth term is the centripetal inertia term induced by the centripetal
acceleration of the cylinder centre. The tangential squeeze "lm force expressed by equation
(6) consists of three terms. The "rst two terms are the viscous and the unsteady inertia terms,
while the third term is the Coriolis inertia term, induced by the Coriolis acceleration of the
cylinder centre. The geometry coe$cients and the force coe$cients in the above equations
are listed in Table 3, where the integral terms are de"ned as (Booker 1965)

I lm
n
"P

h2

h1

sinl h cosm h
(1!e cos h)n

dh.

For applications in heat exchangers with water as the #uid, the integral limit of (0, 2n)
should be used in the above equations, since usually there is no cavitation and therefore
a full "lm is formed in the system. The force coe$cients for the 2n-"lm after integration are
listed in Table 4.

2.2. DISCUSSION

To calculate the squeeze "lm forces, three approximation methods have been used by Han
(1997) and Han & Rogers (1996). All three methods require an approximation for the
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velocity pro"le in the squeeze #ow. Comparing equations (5) and (6) with the force
equations from Lu (1993) and El-Shafei & Crandall (1991) for the short model, we can see
that the only di!erences are caused by the constant coe$cients D

i
(i"1, 2 and 3) (Han

& Rogers 1996), when the pressure di!erence induced by the edge e!ect in Lu's study is
neglected. Substituting the values of the constant coe$cients obtained by Han & Rogers
(1996) for the energy method with the conventional parabolic velocity pro"le into equations
(5) and (6), we will reproduce exactly the same results as in the El-Shafei & Crandall paper.
Performing the same substitution for the momentum method, we will "nd that the
di!erences in the results from Lu's study are only due to the edge e!ect.

Zhang et al. (1993) also developed analytical expressions for a short cylindrical squeeze
"lm damper and used both the momentum and energy approximation methods. By
comparing the pressure expressions (see Table 1 in Zhang et al., 1993) with the studies from
Tichy and Bou-Said (1991), El-Shafei and Crandall (1991), their own study and others, the
di!erences in the temporal inertia term and convective inertia term are shown to be due to
the di!erent averaging methods used within the squeeze "lm thickness.

Similar to what Zhang et al. found, the di!erences between the present study and other
studies are only in the constant coe$cients and the di!erences are generally not large (Han
1997). The ratio of unsteady inertia force terms obtained using the elliptical pro"le and the
parabolic velocity pro"le derived by El-Shafei and others ranges from 1)081 to 1)180 for
shape factor A"1)0}1)2 when the iterative or energy approximation methods are utilized.
The ratios greater than unity show that the elliptical velocity pro"le takes more inertia e!ect
into account than does the parabolic velocity pro"le. The experimental results by Lu
& Rogers (1992, 1994), El-Shafei (1988) and San Andes et al. (1993) demonstrated that when
the cylinder (journal) motion amplitude increases, the unsteady inertia term increases and
dominates over the other force terms. Thus, if we have accurate unsteady inertia terms, we
will have more accurate squeeze "lm force equations for a system with large amplitude
motion.

3. LONG CYLINDRICAL MODEL

3.1. DERIVATION

Figure 2 shows the cylindrical squeeze "lm con"guration and coordinates used for the long
model con"guration. The x, y and z (normal to the page) coordinates constitute the local
coordinate system for the squeeze "lm at an angle h, where u is the local #uid #ow velocity at
this angle along the x direction. The other notations are the same as for the short model.
The simpli"ed Navier}Stokes equation for the in"nitely long cylindrical squeeze "lm can be
written as
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, (7)

where Lp/Ly"0 since the variation of pressure across the "lm is small and can be neglected
and Lp/Lz"0 since ¸ is in"nite (z is normal to page). The continuity equation is
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#
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To solve these equations, the same strategy as in Han & Rogers (1996) is used. The elliptical
velocity distributions obtained for the rectangular model can be further developed to form
the distributions for the long cylinder model.



Figure 2. Con"guration of in"nitely long cylindrical squeeze "lm with arbitrary cylinder motion.
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To obtain the #uid #ow velocity at angle h for the con"guration shown in Figure 2,
consider the out-#ow due to an in"nitesimal element of #uid. Assuming that the #uid
velocity pro"le takes an elliptical pro"le form, the squeeze #ow velocity due to the relative
normal oscillating motion of the two small parts of the surfaces of the two cylinders is (Han
& Rogers 1996)
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where we neglect the relative motion of the cylinders along the tangential direction,

E
1
"JA2!(2y/h!1)2, E

2
"JA2!1, E

3
"arcsin((2y!h)/(Ah)), E

4
"arcsin(1/A) and

B"A2E
4
!E

2
.

The volume-#ow rate (per unit length in the axial direction) at the small in"nitesimal #uid
element is
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Substituting equation (9) into the above equation, taking

v
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into account and evaluating the integral gives simply

Qi"!Rv
c
dh. (12)

For incompressible #ow, the out-#ow rate of the squeeze #ow, per unit length in the axial
direction, at angle h is the integration of equation (12) with respect to h from 0 to h, which is
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After obtaining Q, the mean out-#ow velocity at angle h is easy to determine using
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Because the #ow is described using an elliptical pro"le, we can also have the expression
for the mean out-#ow velocity given as
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Through making the integral and re-arranging equation (16) for C, we obtain
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The constant C@ can be determined through utilizing the boundary condition y"0, v"0,
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Substituting equation (20) into equation (19), we have the expression for the velocity
distribution in the y direction
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Through the same procedure as above, we can obtain the velocity distributions for the
long cylindrical model based on the parabolic velocity pro"le as
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El-Shafei (1988) also derived the velocity distributions using Reynolds' equation for a long
model. The di!erence between the velocity distributions expressed by equations (22) and
(23) and those obtained by El-Shafei is in the third term of expression v@

c
, that is 3e/(2#e2).

[El-Shafei's equivalent to expression (15) is v@
c
"eR sin h!etQ cos h#etQ 3e/(2#e2) which is

not based on the integral of -v
c
.]

Based on Navier}Stokes equation (7) and using the three approximation methods, as well
as the elliptical and the present parabolic velocity distributions (18) and (21)}(23), the
general pressure gradients are derived in Appendix A and can be expressed as

Lp

Lh
"

kR2

h3
D

1
v@
c
!

oR2

h
D

2
C1

t
!

oR2

h2
D

3
C2

t
#

oR2

h3
D

4
C2h , (24)

where C1
t
, C2

t
and C2h are de"ned in Appendix A and D

i
(i"1}4) are the constant coe$-

cients listed in Tables 1 and 2.
The squeeze "lm forces acting on the surface of the moving cylinder can be expressed by

the following equations:
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Integrating these equations by parts, the general squeeze "lm forces acting on the moving
cylinder for a 2n "lm can be expressed as
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The same form of equations as for the short model are obtained. The geometry coe$cients
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(i"1}3) and force coe$cients Cn
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equations are listed in Table 5.

3.2. DISCUSSION

Lu (1993) and El-Shafei & Crandall (1991) obtained the same form of equations for the
in"nitely long geometries for the applications of heat exchangers and squeeze "lm dampers,
respectively, although Lu's study is for radial motion only. When the oscillation amplitude
of the inner cylinder (or journal) increases or decreases for the same form of motion (radial
or arbitrary motion), some of the force coe$cients obtained here vary with very similar
tendencies as their results, while others do not. Since all the force coe$cients from Lu's
study are very similar to the present work, as well as to El-Shafei & Crandall's studies, his
results are not included in this paper.

For comparison, the force coe$cients of the present approximation method in equations
(27) and (28) and the corresponding force coe$cients from El-Shafei & Crandall (1991) for
the long model are listed in Table 6. In the present study, the di!erences due to the three
approximation methods and the two pro"les (elliptical and parabolic) are entirely



TABLE 5
Geometry and force coe$cients for the long cylindrical model for 2n-"lms
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TABLE 6
Force coe$cients for the long cylindrical model for 2n "lm after integration
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contained in the four constant D
i

coe$cients listed in Tables 1 and 2. Except for the
D

i
constants, each individual term in the present force equations, from the di!erent methods

and pro"les, is identical. Therefore, for convenience, the comparison carried out here is
based on the present energy method and the present parabolic velocity pro"le.



Figure 3. Viscous force coe$cient comparison for long model: *h*, Cn
v

(El-Shafei & Crandall
and present); *#*, Ct

v
(present); *n*, C t

v
(El-Shafei & Crandall).

Figure 4. Normal inertia force coe$cient comparison for long model: *h*, M
ce

(El-Shafei
& Crandall);*n*, Mn

un
(El-Shafei & Crandall and present);*#*, M

ce
(present);*s*, M

cv
(El-

Shafei & Crandall and present).
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From Table 6, we can see that the present approximation methods and El-Shafei's energy
method for the squeeze "lm forces yield quite di!erent equations. The di!erences are caused
by (i) the velocity pro"le di!erences in the third term of v@

c
, that is 3e/(2#e2), and (ii) the

di!erent derivation methods.
Figures 3}5 show comparisons of the viscous and inertia force coe$cients in the normal

and tangential directions between the present study and the El-Shafei & Crandall (1991)
studies for a 2n-"lm. In the normal direction all the force coe$cients except for centripetal
inertia M

ce
are exactly the same. When the instantaneous eccentricity ratio is close to zero

(eP0), the di!erences between the M
ce

values from the two studies decrease. At the other
limit condition, when eP1, we can see very large di!erences in the M

ce
inertia force

coe$cient. Greater di!erences between the two studies are shown in the tangential



Figure 5. Tangential inertia force coe$cient comparison for long model: *e*, Mt
un

(present);
*h*, M

co
(El-Shafei & Crandall); *#*, M

co
(present); *n*, Mt

un
, (El-Shafei & Crandall).

TABLE 7
Force coe$cients for the long cylindrical model from using the present energy method and El-Shafei's

parabolic velocity pro"le

Cn
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v
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direction. The two tangential inertia coe$cients, Mt
un

and M
co
, in Figure 5 show remarkably

di!erent trends compared to El-Shafei & Crandall (1991). For very small eccentricities
(eP0), all the tangential force coe$cients obtained here are 2 or 3 times bigger. When eP1,
there are still clear di!erences in the Coriolis inertia force coe$cient M

co
from the two

methods, whereas Ct
v
and Mt

un
approach similar values.

To help to understand the squeeze "lm force di!erences caused by the di!erence between
the two parabolic velocity pro"les in the third term of v@

c
(3e/(2#e2)), a derivation was also

carried out using the present energy approximation method and the parabolic velocity
distribution obtained by El-Shafei (1988). The results are shown in Table 7. Except for M

ce
,

Mt
un

and M
co
, all the other force coe$cients are exactly the same as obtained by El-Shafei

& Crandall (1991) and shown in Table 6. Figure 6 shows these three inertia force coe$cients
versus instantaneous eccentricity, derived using the two velocity distributions. It demon-
strates that the di!erences are quite big (two or three times) for small eccentricities. As the
eccentricity increases, the di!erences become smaller. At large eccentricities (eP1) the
di!erences are very small. All three dashed curves in Figure 6 (using the present energy



Figure 6. Three long model inertia force coe$cients from the present energy method with El-
Shafei's velocity pro"le and with the present parabolic velocity pro"le; *j*, Mt

un
(present);

*h*, Mt
un

(El-Shafei & Crandall); *#*, M
co

(present); *n*, M
co

(El-Shafei & Crandall);
(*e*, M

ce
(El-Shafei & Crandall); *s*, M

ce
(present).
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method with El-Shafei's velocity pro"le) have values near 4 at low eccentricities, which is
what El-Shafei & Crandall (1991) predict (see Figures 4 and 5).

For further comparison, the expressions for a long squeeze "lm damper performing
circular orbits about the centre of the bearing housing from San Andres & Vance (1986) for
Re@1 and RePR are examined. The only nonzero inertia coe$cient is the centripetal
term M

ce
and Ct

v
is the only viscous term. Their M

ce
coe$cient can be expressed as

M
ce
"

i
g
g
j
g
g
k

12n
35 C

c!1

e2 A1#
2c

2#e2B#
18c

(2#e2)2D Re@1,

4nc
(2#e2)2

RePR.

(29)

Their expression for Ct
v
is the same as El-Shafei & Crandall's in Table 6. The variations of

M
ce

with e along with results from El-Shafei & Crandall (1991) and the present study, are
shown in Figure 7. The above two expressions of M

ce
for small and large Reynolds numbers

have very similar trends as e changes. The results of the present energy method with two
di!erent parabolic velocity pro"les [one of them contains the term with 3e/(2#e2)] are also
shown in Figure 7. From Table 7, Figure 7 and the above expressions, we see that the inertia
force coe$cients M

ce
from the present energy method (with both parabolic velocity pro"les)

and from the study by San Andres & Vance have no big di!erences for di!erent instan-
taneous eccentricity ratios.

From the above comparisons, the following six observations can be made for the long
model. (i) The only di!erences among the present squeeze "lm force equations due to the
three approximation methods and the two di!erent velocity pro"les are in the four constant
D

i
coe$cients and the di!erences are generally not very big. (ii) Three of the four normal-

direction force coe$cients (all but M
ce
) are exactly the same as El-Shafei & Crandall (1991)

(when the same D
i
factors are used). (iii) The variation of M

ce
with e is very similar to that

found by San Andres & Vance (1986), although it is very di!erent from El-Shafei & Crandall
(1991), especially for eA0. (iv) The tangential-direction viscous force coe$cient is approximately



Figure 7. Centripetal inertia force coe$cient (M
ce
) for circular-centered motions for long model:

*h*, El-Shafei & Crandall;*e*, San Andres & Vance for RePR;*n*, San Anders & Vance
for ReP0 and present method with El-Shafei's velocity pro"le;*#*, present method with present

parabolic velocity pro"le.
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3 times larger than El-Shafei & Crandall's as eP0, but becomes comparable for eA0.
(v) The two tangential-direction inertia force coe$cients Mt

un
and M

co
in the present model

show very di!erent trends with e compared to El-Shafei & Crandall; although they are
roughly comparable in size, in the present model they decrease as e increases, whereas
El-Shafei & Crandall predicted the opposite trend. (vi) When the present energy method
and the parabolic velocity pro"le with 3e/(2#e2) is used, the inertia force coe$cients
Mt

un
and M

co
show big di!erences from El-Shafei & Crandall (1991) as eP0, but become

similar for eA0.
The above discussion indicates that the normal force components in the long model show

quite good agreement with previous models. [The centripetal term by El-Shafei & Crandall
(1991) appears to be inconsistent with both the present work and that of San Andres
& Vance (1986).] In contrast the present results for the tangential force terms are substan-
tially di!erent from previous models.

The studies by El-Shafei & Crandall and those of San Andres & Vance are based on the
assumptions of small amplitude arbitrary or circular-centred motions, respectively. The
present e!ort aimed to include the large #uid inertia e!ects due to large amplitude cylinder
(journal) motions. The signi"cant di!erences in the "nal force equations are due to the
di!erent assumptions used in the derivation of the force equations. The present force
equations with the elliptical velocity pro"le should lead to more accurate results for high
squeeze Reynolds numbers, since when Re'50 the parabolic velocity pro"le from
El-Shafei & Crandall (1991) has large di!erences from the real velocity pro"les as demon-
strated by Han & Rogers (1996). To verify the accuracy of the present analytical models,
experimental tests and more theoretical work are needed.

4. CONCLUSIONS

Using three approximation methods and two velocity pro"les, both short and long cylin-
drical squeeze "lm force models have been developed. The nonlinear force equations have
the same form for the two models.
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Comparisons with the existing models demonstrates that the force terms in the present
short cylindrical squeeze "lms are either exactly the same or have the same trends with
instantaneous eccentricity values. The di!erences resulting from di!erent averaging
methods and velocity pro"les are not very large.

Comparing the present expressions obtained using the present parabolic velocity pro"le
with existing models for long cylindrical squeeze "lms illustrates that: (i) the viscous,
unsteady inertia and convective inertia terms, acting in the normal direction, are essentially
the same as in other studies; (ii) the normal direction centripetal inertia term shows similar
variations with position as one published study, but very di!erent from another study; and
(iii) the three tangential direction force terms show variations with position which are very
di!erent from a previous published study.

The higher unsteady inertia forces obtained using the iterative and energy approximation
methods, along with the elliptical velocity pro"les, show that the new models include larger
inertia e!ects. The unsteady inertia force coe$cients obtained using the elliptical velocity
pro"le is about 1)1}1)2 times higher than those obtained using El-Shafei & Crandall's
parabolic velocity pro"le when either the iterative or energy approximation method is used.
The present models should predict more accurately the squeeze "lm forces acting between
tubes and their support plates in shell-and-tube heat exchangers.
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APPENDIX A: DERIVATION OF PRESSURE GRADIENTS FOR LONG MODELS

A.1. MOMENTUM METHOD

Considering that the three terms on the left-hand side of equation (7) are functions of y and
the fact that the squeeze "lm is very thin (h@R), an averaging procedure can be taken for the
three terms to solve the equation. Then, the equation is changed into

o
h P

h

0
A
Lu

Lt
#u

Lu

R Lh
#v

Lu

LyBdy"!

Lp

R Lh
#k

L2u
Ly2

. (A1)
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Using equations (22) and (23) and taking into account that v
c
"Lh/Lt and Lh/Lh"e sin h,

we can then obtain Lp/Lh with the parabolic velocity pro"le
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Similarly, using equations (18) and (21), Lp/Lh with the elliptical velocity pro"le is
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In the above equations,

C1
t
"eK sin h#eR tQ (1!2 cos h)#etG (1!cos h)!etQ 2 sin h ,

C2
t
"!l

c
l@
c
, C2h"l@2

c
e sin h,

and v
c
and v@

c
are de"ned in equations (11) and (15), respectively.

A.2. ITERATIVE METHOD

Rearranging the simpli"ed Navier}Stokes equation (7) for the in"nitely long cylindrical
squeeze "lm shown in Figure 1 for L2u/Ly2, we have

L2u

Ly2
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kC
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R Lh
#oA
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Lu

R Lh
#l

Lu

LyBD . (A4)

Since p is a function of h and t, after substituting equations (18) and (21) and equations (22)
and (23), respectively, into the above equation, solutions for u can be obtained by integrat-
ing the above equation twice with respect to y. To make the integration, the geometric
condition

y"h/2, Lu/Ly"0 (A5)

and the boundary condition

u"0, y"0 (A6)

are used.
The derived velocity distribution has to satisfy the continuity relationship for the

cylindrical squeeze "lm con"guration

P
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u dy"!P
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c
. (A7)

Substituting for the expressions for u into the above equation and making the integral
directly, we obtain Lp/Lh for the parabolic velocity pro"le
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and for the elliptical velocity pro"le
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A.3. ENERGY METHOD

According to El-Shafei (1988), using an energy method, the Navier}Stokes equation is
multiplied by the circumferential #ow velocity prior to integration across the "lm to obtain
the average circumferential pressure gradient. The equation for the energy method is
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Substituting equations (18) and (21) and equations (22) and (23), respectively, we again
"nd equation (A8) for the parabolic velocity pro"le, and for the elliptical velocity pro"le
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A.4. GENERAL PRESSURE GRADIENT AND SQUEEZE FILM FORCES

We can write the pressure gradient for each method as
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The e!ects of using a di!erent approximation method or the elliptical or parabolic pro"les
are entirely contained in the expressions for the constant coe$cients, D

i
(i"1}4). Values for

the D
i
coe$cients are shown in Tables 1 and 2.

Squeeze "lm force equations (25) and (26) can be conveniently integrated
using the method of integration by parts. Treating the pressure far from the "lm edge as zero
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we have
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The geometric coe$cients C
i

in the above equations are listed in Table 5. The force
components in the normal and tangential directions in the equations can be found in Han
(1997). For the limit of (0, 2n), through rearranging equations (A13) and (A14), we have
equations (27) and (28).

APPENDIX B: NOMENCLATURE

A shape factor of elliptical velocity pro"le (ratio of ellipse minor axis to h)
c radial clearance
C

i
geometry coe$cients, i"1, 2, 3

C
v

viscous (damping) force coe$cient
D, R cylinder diameter and radius
D

i
constant force coe$cients, i"1, 2, 3, 4

e amplitude of the cylinder sinusoidal motion
F squeeze "lm force on the cylinder
h instantaneous local squeeze "lm thickness
¸ cylinder length
M

ce
centripetal inertia force coe$cient

M
co

Coriolis inertia force coe$cient
M

cv
convective inertia force coe$cient

M
un

unsteady inertia force coe$cient
p pressure in squeeze "lm
p
a

pressure far from the "lm edge
p
c

mid-plane pressure
Re squeeze "lm Reynolds number (Re"uc2/l)
u, v #ow velocities in circumferential and radial directions
x, y, z moving coordinate directions (Figures 1 and 2)
X>, Z "xed coordinate directions (Figures 1 and 2)
c (1!e2)1@2
e instantaneous eccentricity ratio e/c
h, u angles (Figures 1 and 2)
k absolute #uid viscosity
l kinematic #uid viscosity
o #uid mass density
t, tQ , tG instantaneous angle, angular velocity and acceleration of cylinder centre
u characteristic circular frequency
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