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Using three approximation methods, nonlinear models have been derived for short and long
cylindrical squeeze films with arbitrary inner cylinder motions. Elliptical and parabolic velocity
profiles are employed in the derivation in order to determine the effects of the choice of velocity
profile. The only differences in the final squeeze film equations, due to the three approximation
methods and the two velocity profiles, are in the four constant coefficients. Each term in the
squeeze film equations is a nonlinear function of cylinder position. Comparing the present
nonlinear expressions with existing models for short cylindrical squeeze films shows that the
force terms are either exactly the same or have the same trends with instantaneous eccentricity
values. For long cylindrical squeeze films, the present expressions have some force terms which
are essentially the same as in other studies, while other force terms show variations with
position which are very different from a previously published study. © 2001 Academic Press

1. INTRODUCTION

CYLINDRICAL SQUEEZE FILMs are important to design and maintenance engineers working
with squeeze film dampers in rotating machinery, as well as other industrial applications
such as shell-and-tube heat exchangers, because of the increasing demand for mechanical
systems (for example, in the nuclear power industry) to have long life and satisfactory
operating performance. The study of squeeze films, generated in a fluid-filled clearance
between a cylinder (tube) and a cylindrical sleeve (support) when the cylinder oscillates, is
important for the prediction of the cylinder motions, contact forces and the rate of fretting
wear (Pettigrew & Ko 1980). The damping provided by the squeeze films is the major source
of damping to limit the vibration induced by turbulent liquid flow across the heat exchanger
tubes (Pettigrew et al. 1986).

To evaluate and improve the performance of the shell-and-tube heat exchangers, many
theoretical and experimental investigations on the squeeze film phenomena acting between
a tube and its support have been initiated in the past. The main contributors to this work
are Mulcahy (1980), Haslinger et al. (1990), Esmonde et al. (1992) and Lu & Rogers (1992,
1994, 1995).

Because of the common theoretical basis, the study of squeeze films between tubes and
support plates in heat exchangers is closely related to that of squeeze film dampers used in
rotating machinery. However, due to the differences in the structures and movement
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characteristics of the inner cylinder, most of the analyses in the literature of squeeze film
studies in heat exchangers consider finite length film approximations and special consider-
ations are given to arbitrary inner cylinder motion. Two of the analytical approaches
available in the literature for modelling finite-length squeeze films are: (i) to use length-
correction factors with a short axial flow solution, and (ii) to use side-leakage factors with an
infinitely long circumferential flow solution. A relevant example of modelling finite-length
squeeze films by using length-correction factors with a short film solution is given by Barrett
et al. (1980). Modelling finite-length squeeze films by using side-leakage factors with an
infinitely long circumferential solution, can be seen, for example, from the publications by
Warner (1963), San Andres & Vance (1987a) and Lu & Rogers (1994). Zhang & Roberts
(1996) also used the same or similar ideas to account for the length effects. The validity of
this way of forming the force equations is naturally dependent on the accuracy of the short
and long squeeze film models.

There are many publications of theoretical and experimental studies on squeeze film
dampers dealing with short and long bearing models. For short models, Tichy (1982)
presented an approximate analytical solution for squeeze film damper forces, which ac-
counts for the effects of fluid inertia and viscoelasticity. An earlier “exact” solution for
infinitesimal oscillation amplitudes is extended to finite amplitudes using the Rivlin-Ericksen
second-order fluid. In a later paper, Tichy (1985) experimentally studied short squeeze-film
bearing forces including inertia effects for squeeze Reynolds number (wc?/v) up to 13 and
eccentricity ratios up to 0-8. The ratio of length/diameter was close to 0-15. San Andres et al.
(1993) carried out an experimental study on squeeze film forces for a short squeeze film
damper with length/diameter ratio of 0-188. Zhang et al. (1993, 1994) and Zhang (1997) also
performed theoretical and experimental studies of short squeeze film dampers. The results
of the above studies were for applications with small to moderate squeeze Reynolds number
cases.

The significant studies of squeeze film damper performance for long bearing cases are: (i)
small-amplitude circular-centred motions by Tichy (1984), San Andres & Vance (19874, b)
and Jung (1990); (ii) periodic motions by Zhang (1997); and (iii) arbitrary motions by
El-Shafei & Crandall (1991). They all tried to include fluid inertia effects in the infinitely
long squeeze films. In the first and the second categories only the transient inertia term was
considered (with the statement that convective inertia terms were all negligible relative to
the transient term). One of the very fundamental assumptions in the El-Shafei & Crandall
study is that the effects of the fluid inertia on the velocity profile can be neglected. Therefore,
the applications of their studies are also limited to the fluids with small to moderate
Reynolds number.

There are relatively few publications on the study of squeeze films between tubes and
support plates in heat exchangers. Lu & Rogers (1992) developed an equation for the short
length, cylindrical squeeze film forces with moderately large eccentricities based on
a squeeze film model for two-dimensional rectangular plates. Lu & Rogers (1994) developed
an infinitely long cylindrical model with radial inner cylinder motions by using an averaging
procedure (across the film thickness) to include all inertia terms. Due to the large radial
clearance (typically R/c = 30-50) and the low viscosity fluid used, the squeeze Reynolds
number in shell-and-tube heat exchangers is usually higher than that in squeeze film
dampers. Consequently, this difference in squeeze Reynolds numbers requires attention for
squeeze film studies in heat exchanger applications. Until now there is no theoretical study
dealing with infinitely long squeeze films between a tube and a heat exchanger support plate
for arbitrary tube motions.

The objective of the present work is to develop both a short squeeze film model and an
infinitely long model suitable for accurate prediction of the squeeze film forces between
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tubes and their supports in heat exchangers, with consideration of the various kinds of
inertia effects. The derivation of the short model is similar to that of Lu & Rogers (1995),
whereas for the long model, a new elliptical velocity distribution has been derived. The
results obtained using the different velocity profiles and three approximation methods are
compared with the existing models. The present paper is an expanded version of a confer-
ence paper (Han & Rogers 1997).

2. SHORT CYLINDRICAL MODEL
2.1. DERIVATION

Figure 1 shows the cylindrical squeeze film configuration for the short model and the
coordinates used. The cylinder centre O’ has an instantaneous position (e, i) in the
stationary polar coordinate system, and n and ¢ are moving unit vectors. The film thickness
at any angle 6 in polar coordinates is

h=c—ecos(¢p —y)=c—ecosO, (1)

see Nomenclature in Appendix B for variable definitions.

If we neglect the effect of the convective inertia of fluid entering and exiting the system,
the squeeze film pressure for the short cylindrical model is given by an expression derived
for rectangular plates (Han & Rogers 1996)

u dh p d*h p (d\*\/X?* L?
= (D B p, PC p P (Y (A B 2
PP < wa a7 we\a) \ 2 TS @

The constant D; coefficients depend on the choice of approximation method, the type of
flow velocity profile, and also the profile factor A for the elliptical velocity profile as shown
in Tables 1 and 2. Differentiating the local clearance h twice with respect to time and

AZ
f
n
4
@
(]
o
(4 >V
(0]
R
Cylinder
Clearance
Sleeve

Figure 1. Configuration of squeeze film for short cylindrical model with arbitrary cylinder motion.
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TasLe 1
Constant coefficients for parabolic velocity profiles*

Profile Method D, D, D, D,

Parabolic Momentum 12 1 24 12
Iterative 12 1 2914 1-543
Energy 12 1 2914 1-543

* The resutls of momentum and energy approximations using parabolic velocity
profile are from El-Shafei and Crandall (1991).

TABLE 2
Constant coefficients for elliptical profiles and different
A values
Method A value D, D, D, D,
Momentum 1 0 1 2:162  1-081
approx. 11 18925 1 2293 1147
12 15998 1 2:324  1-162
Iterative 1 12 11125 2479 1297
approx. 11 12 117 2719 1435
1-2 12 1-18 2775  1-466
Energy 1 0 1-081 2:364 1216
approx. 11 12:682  1-147 2657 1-389
12 12308 1162 2731 1432

substituting the results into the above equation yields the film pressure as a function of the
axial coordinate X and 0,

4x2
p=pc<L2 —1>+Pa, (3)
where
8 Dpcos0 s Dypusin0 ey D,pcos0 5 D,psin0 .
bepz= (1 — ecos0)® (1 — ecos0)? c(1 —gcosl) (1 —ecos0)
D,psin _ .. D,pcosf -, Dipcos?l
_ ) __epPrOs Y
c(1 — ecos 0) W+ c(1 — ecos0) v c*(1 — ecos 0)? ¢
D;psin®0 . D 0sin 6 .
B 3P sin (e — 3p cos 0sin 2edi)

c*(1 —ecos0) c*(1 — ecos 0)?

Taking p, as atmospheric pressure, we can obtain the squeeze film force acting on a very
small arc of the cylinder with width R do:

L2 4x? 2Lp.R
dF=<J pc<Lz—1>dX>Rd0=— é’c do. )

-L/2

In the conventional way, the forces acting on the moving cylinder in the normal and
tangential directions can be obtained as

32

F,=— C,C% — C,Mé — czMw% + C,M ey, 5)

F,=— C,Cleyy — CoMLefy — CaM 26 . (6)
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TaBLE 3
Geometry and force coefficients of the short cylindrical model

uL3R pL’R
C, 3 G,
c c
e =y ¢ i
12 12
M, 2 M, e
12 12
M S’i 103 M & 120 % IZI
cv 12 2 co 12 1 12 2
D eD
Mce =2 1?2 —— 151
12 12
TaBLE 4
Force coefficients of the short cylindrical model for 2z films
D1+ 2¢ . D, n
C:: 1 5 Cv A 3
12y 12y
D,n1— D, n(l —
M2, Tz ! M ?2 ( : 7)
&y &
M D;rn 2 — 3¢ n(l —vy D1 —)
cv 6_32<2 _ - > Mm (6 - /) <D2 + 3( /))
3 Y 3 Y
Mce T[(l - y)

6?27 [D, — D41 — )]

The normal squeeze film force expressed by equation (5) consists of four terms. The first
three terms are the viscous term, unsteady inertia term and convective inertia term,
respectively, and the fourth term is the centripetal inertia term induced by the centripetal
acceleration of the cylinder centre. The tangential squeeze film force expressed by equation
(6) consists of three terms. The first two terms are the viscous and the unsteady inertia terms,
while the third term is the Coriolis inertia term, induced by the Coriolis acceleration of the
cylinder centre. The geometry coefficients and the force coefficients in the above equations
are listed in Table 3, where the integral terms are defined as (Booker 1965)

i _ % sin' 0 cos™ 0
" o, (1 —gcosO)y

For applications in heat exchangers with water as the fluid, the integral limit of (0, 27)
should be used in the above equations, since usually there is no cavitation and therefore
a full film is formed in the system. The force coefficients for the 27-film after integration are
listed in Table 4.

2.2. DiscussioN

To calculate the squeeze film forces, three approximation methods have been used by Han
(1997) and Han & Rogers (1996). All three methods require an approximation for the
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velocity profile in the squeeze flow. Comparing equations (5) and (6) with the force
equations from Lu (1993) and El-Shafei & Crandall (1991) for the short model, we can see
that the only differences are caused by the constant coefficients D;(i = 1, 2 and 3) (Han
& Rogers 1996), when the pressure difference induced by the edge effect in Lu’s study is
neglected. Substituting the values of the constant coefficients obtained by Han & Rogers
(1996) for the energy method with the conventional parabolic velocity profile into equations
(5) and (6), we will reproduce exactly the same results as in the El-Shafei & Crandall paper.
Performing the same substitution for the momentum method, we will find that the
differences in the results from Lu’s study are only due to the edge effect.

Zhang et al. (1993) also developed analytical expressions for a short cylindrical squeeze
film damper and used both the momentum and energy approximation methods. By
comparing the pressure expressions (see Table 1 in Zhang et al., 1993) with the studies from
Tichy and Bou-Said (1991), El-Shafei and Crandall (1991), their own study and others, the
differences in the temporal inertia term and convective inertia term are shown to be due to
the different averaging methods used within the squeeze film thickness.

Similar to what Zhang et al. found, the differences between the present study and other
studies are only in the constant coefficients and the differences are generally not large (Han
1997). The ratio of unsteady inertia force terms obtained using the elliptical profile and the
parabolic velocity profile derived by El-Shafei and others ranges from 1-081 to 1-180 for
shape factor A = 1-0-1-2 when the iterative or energy approximation methods are utilized.
The ratios greater than unity show that the elliptical velocity profile takes more inertia effect
into account than does the parabolic velocity profile. The experimental results by Lu
& Rogers (1992, 1994), El-Shafei (1988) and San Andes et al. (1993) demonstrated that when
the cylinder (journal) motion amplitude increases, the unsteady inertia term increases and
dominates over the other force terms. Thus, if we have accurate unsteady inertia terms, we
will have more accurate squeeze film force equations for a system with large amplitude
motion.

3. LONG CYLINDRICAL MODEL

3.1. DERIVATION

Figure 2 shows the cylindrical squeeze film configuration and coordinates used for the long
model configuration. The x, y and z (normal to the page) coordinates constitute the local
coordinate system for the squeeze film at an angle 6, where u is the local fluid flow velocity at
this angle along the x direction. The other notations are the same as for the short model.
The simplified Navier-Stokes equation for the infinitely long cylindrical squeeze film can be

written as
ou ou ou op 0%u
-~ —_ )= — 7
p(az+”Rae+”@> Roo H oy @

where 0p/dy = 0 since the variation of pressure across the film is small and can be neglected
and 0p/dz = 0 since L is infinite (z is normal to page). The continuity equation is

ou ov
g 8
Ra0 " oy ®
To solve these equations, the same strategy as in Han & Rogers (1996) is used. The elliptical
velocity distributions obtained for the rectangular model can be further developed to form
the distributions for the long cylinder model.
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Figure 2. Configuration of infinitely long cylindrical squeeze film with arbitrary cylinder motion.

To obtain the fluid flow velocity at angle 0 for the configuration shown in Figure 2,
consider the out-flow due to an infinitesimal element of fluid. Assuming that the fluid
velocity profile takes an elliptical profile form, the squeeze flow velocity due to the relative
normal oscillating motion of the two small parts of the surfaces of the two cylinders is (Han
& Rogers 1996)

2R dh

u = _ﬁE(El — E,)do, )

where we neglect the relative motion of the cylinders along the tangential direction,
A* — (2y/h — 1)}, E, = \/A* — 1, E5 = arcsin((2y — h)/(Ah)), E, = arcsin(1/A4) and
B=A’E, — E,.
The volume-flow rate (per unit length in the axial direction) at the small infinitesimal fluid
element is

Q' = jh u'dy. (10)
0
Substituting equation (9) into the above equation, taking
ve = dh/dt = — écos 0 — e sin 0 (11)
into account and evaluating the integral gives simply
Q' = — Ru.d0. (12)

For incompressible flow, the out-flow rate of the squeeze flow, per unit length in the axial
direction, at angle 0 is the integration of equation (12) with respect to 0 from 0 to 0, which is

Q:—Rﬁmw. (13)
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After obtaining Q, the mean out-flow velocity at angle 0 is easy to determine using

R
gt (14

u=
where v, is the integral of — v, with respect to 0 from O to 0,

v.=2ésin0 — efcosl + ey. (15)

Because the flow is described using an elliptical profile, we can also have the expression
for the mean out-flow velocity given as

h
U= f C(E; — E;)dy. (16)
0
Through making the integral and re-arranging equation (16) for C, we obtain
2R o
C=—ul. (17)
Therefore, the final form of the circumferential flow velocity is given by
2R ,
UZE(El —Ez)vc. (18)
From the continuity equation (8) and taking into account that ¢ — iy = 0, so yy = — 0,

61/}/60 =0, and 0h/00 = esin 0, we find

ou
U__fRéﬂdy

2 1

=5 [(Z (2y — h)E1h + (Ah)*E3) — hyE2>Uc + (E{ — E,)yv.esin (9} + C, (19)

where

Ju 2 2 (A*h + 2y —h) .
m = — Fh(El — Ez)l)c + th<w — 2E1 + Ez v.esm 0.
The constant C’ can be determined through utilizing the boundary condition y =0, v = 0,
1

C = 2B(A E, + E))v.. (20)

Substituting equation (20) into equation (19), we have the expression for the velocity
distribution in the y direction

2
(Ey — Ey)yveesin0.  (21)

v= [(2y — hE; + A*WE3 + E4) + E5(h — 4y)]v, + B

2Bh

Through the same procedure as above, we can obtain the velocity distributions for the
long cylindrical model based on the parabolic velocity profile as

6R ,
u =5 (hy = )0, 22

6 [/h*y*  hy? ) o
U_h“[< S T3 v, + (hy” — y’)uv.esinf |. (23)
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El-Shafei (1988) also derived the velocity distributions using Reynolds’ equation for a long
model. The difference between the velocity distributions expressed by equations (22) and
(23) and those obtained by El-Shafei is in the third term of expression v, that is 3&/(2 + &%).
[El-Shafei’s equivalent to expression (15) is v, = ésin 0 — ey cos 0 + eyr3¢/(2 + &?) which is
not based on the integral of -v,.]

Based on Navier-Stokes equation (7) and using the three approximation methods, as well
as the elliptical and the present parabolic velocity distributions (18) and (21)-(23), the
general pressure gradients are derived in Appendix A and can be expressed as

2 2 2 2
%z%Dlv; —%ch} —phizmcf +phi31)4c§, (24)
where C}, C? and Cj are defined in Appendix A and D; (i = 1-4) are the constant coeffi-
cients listed in Tables 1 and 2.

The squeeze film forces acting on the surface of the moving cylinder can be expressed by

the following equations:

0,
F,=—RL cos0do
Ll P (25)

0,

9
— — RL[psin 014 + RLj a—Zsin@df),
0,

0,
F,=—RL in0d0
p Ll psin (26)

0, ap
= RL[pcos0]% — RL | —cos0do.
' 9, 00
Integrating these equations by parts, the general squeeze film forces acting on the moving
cylinder for a 2x film can be expressed as
52

Fn = - Clcfe - CZMZne - CZMCU e_ + CZMceelp.Z: (27)
e

F,=—C,Cleyy — CoMLey — CaM 26 (28)

The same form of equations as for the short model are obtained. The geometry coefficients
C; (i = 1-3) and force coefficients Ci, M},, M., M., C., M., and M, in the above
equations are listed in Table 5.

3.2. DiscussioN

Lu (1993) and El-Shafei & Crandall (1991) obtained the same form of equations for the
infinitely long geometries for the applications of heat exchangers and squeeze film dampers,
respectively, although Lu’s study is for radial motion only. When the oscillation amplitude
of the inner cylinder (or journal) increases or decreases for the same form of motion (radial
or arbitrary motion), some of the force coefficients obtained here vary with very similar
tendencies as their results, while others do not. Since all the force coefficients from Lu’s
study are very similar to the present work, as well as to El-Shafei & Crandall’s studies, his
results are not included in this paper.

For comparison, the force coefficients of the present approximation method in equations
(27) and (28) and the corresponding force coefficients from El-Shafei & Crandall (1991) for
the long model are listed in Table 6. In the present study, the differences due to the three
approximation methods and the two profiles (elliptical and parabolic) are entirely
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TABLE 5
Geometry and force coefficients for the long cylindrical model for 2z-films

URL pRL
C, 3 G,
c c
n [Fn 0 pR3L
Cv 1 é C3 C2
y LF} [F!
Mun 2 & Cf} 1 &
é ey
M., e D 2m [F,5]%"
-2<D3F§1 - 4F21> Mfm -D, 2-3- 2
e 4 0 ey
Mee ! < p,Fn, — 23 pn y Papn >2" M ! < p,Ft, s F’ + 2 F} )h
elﬁz 2424 o T e . co 2é1ﬁ 222 — 32 42 .

Note. The force components F;; (i and j can be 1, 2, 3 or 4) are given in Han (1997).

TABLE 6
Force coefficients for the long cylindrical model for 2z film after integration
Present El-Shafei & Crandall
C; D n 1 T
1 V3 V3
M, D 2n 1— 24w 1—
22 / 10¢? /
M 2n .(> 2—¢? D 6 — 3¢? ; 247 | 2—¢?
v 2| y 2 10¢? 2y
2n (1 —e2+¢
M, R R e )
e y 24n <12 2(10 — ¢ )y>
102+~ 2+4¢
2 (1 — &)8¢ + &% + 6) 02 +¢) te
Ty D4 2e —3 +
€ 2y(1 + ¢)
3nD, ) 24n
C, —(1—¢) o
Y 2+e)y
2nD 24w 493
M 211 = p)(1 — 2¢) + & +562 =2
:, 2[00 =20 +47] T (2 LAt
™2 5 262 45— 2 + &y + 36%)
———— (2 —e—22 4+ -2+ &%
e2y(1 + ¢) rre /
M, L™ 7D, ( bSe? 4 Ay 4 3%) 247w 2(10 — &%)y
— — & & ) &Y — IE™ —
(1 + o) FTe ey 102 + ) 2+ ¢
TED 2 3
7(—6—28-‘1-78 + 6y + 2ey — 4e*y + &°)
e2y(1 + ¢)

contained in the four constant D; coefficients listed in Tables 1 and 2. Except for the
D; constants, each individual term in the present force equations, from the different methods
and profiles, is identical. Therefore, for convenience, the comparison carried out here is
based on the present energy method and the present parabolic velocity profile.
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Figure 3. Viscous force coefficient comparison for long model: ——, C; (El-Shafei & Crandall
and present); — + —, C!, (present); —A—, C! (El-Shafei & Crandall).
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Figure 4. Normal inertia force coefficient comparison for long model: —[1—, M., (El-Shafei
& Crandall); —A—, M}, (El-Shafei & Crandall and present); — + —, M, (present); —O—, M., (El-
Shafei & Crandall and present).

From Table 6, we can see that the present approximation methods and El-Shafei’s energy
method for the squeeze film forces yield quite different equations. The differences are caused
by (i) the velocity profile differences in the third term of v,, that is 3¢/(2 + &?), and (ii) the
different derivation methods.

Figures 3-5 show comparisons of the viscous and inertia force coefficients in the normal
and tangential directions between the present study and the Fl-Shafei & Crandall (1991)
studies for a 2z-film. In the normal direction all the force coefficients except for centripetal
inertia M, are exactly the same. When the instantaneous eccentricity ratio is close to zero
(e = 0), the differences between the M., values from the two studies decrease. At the other
limit condition, when ¢ — 1, we can see very large differences in the M, inertia force
coefficient. Greater differences between the two studies are shown in the tangential



162 Y. HAN AND R. J. ROGERS

12

10 |

M, and M,,

~
\+\+\+
—t—
—
—t——,
T — e

2 1 I 1 I
0.0 0.2 0.4 0.6 0.8 1.0

&

Figure 5. Tangential inertia force coefficient comparison for long model: —O—, M, (present);
—0—, M., (El-Shafei & Crandall); — + —, M., (present); —A—, M}, (El-Shafei & Crandall).

TaBLE 7
Force coefficients for the long cylindrical model from using the present energy method and El-Shafei’s
parabolic velocity profile

C; 127 24w
_ Ct [
3 v W2
Y 2+
M 2 M T2+ 20— — 27
—(1 —) ——[2c+e¢ —&) — 2
02 7 “ P20+ ) 7’ /
M., 247 2—¢? 6m R
~ 22 - M, (4 — 4y — 106 + T + 24z
10¢ 2y 35ep(2 + &%)
— &% —2e%)
Mee r 632 420y + 96
———(—6—3¢ ) €
352 + &) T

direction. The two tangential inertia coefficients, M, and M,,, in Figure 5 show remarkably
different trends compared to El-Shafei & Crandall (1991). For very small eccentricities
(e = 0), all the tangential force coefficients obtained here are 2 or 3 times bigger. When e — 1,
there are still clear differences in the Coriolis inertia force coefficient M, from the two
methods, whereas C., and M., approach similar values.

To help to understand the squeeze film force differences caused by the difference between
the two parabolic velocity profiles in the third term of v.(3¢/(2 + &?)), a derivation was also
carried out using the present energy approximation method and the parabolic velocity
distribution obtained by El-Shafei (1988). The results are shown in Table 7. Except for M,,,
M, and M,,, all the other force coefficients are exactly the same as obtained by El-Shafei
& Crandall (1991) and shown in Table 6. Figure 6 shows these three inertia force coefficients
versus instantaneous eccentricity, derived using the two velocity distributions. It demon-
strates that the differences are quite big (two or three times) for small eccentricities. As the
eccentricity increases, the differences become smaller. At large eccentricities (¢ — 1) the
differences are very small. All three dashed curves in Figure 6 (using the present energy
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Figure 6. Three long model inertia force coefficients from the present energy method with El-
Shafei’s velocity profile and with the present parabolic velocity profile;, —HEl—, M., (present);
——, M., (El-Shafei & Crandall); — + —, M,, (present); —A—, M., (El-Shafei & Crandall);

(—<—, M., (El-Shafei & Crandall); —O—, M., (present).

method with El-Shafei’s velocity profile) have values near 4 at low eccentricities, which is
what El-Shafei & Crandall (1991) predict (see Figures 4 and 5).

For further comparison, the expressions for a long squeeze film damper performing
circular orbits about the centre of the bearing housing from San Andres & Vance (1986) for
Re«1 and Re —» oo are examined. The only nonzero inertia coefficient is the centripetal
term M, and C! is the only viscous term. Their M, coefficient can be expressed as

12n[y — 1 2 q
—”[” (14 />+ 8 ] Re<«1,

350 2\ 2462 2+

4m)
—(2 n :2)2 Re — 0.
Their expression for C}, is the same as El-Shafei & Crandall’s in Table 6. The variations of
M., with ¢ along with results from El-Shafei & Crandall (1991) and the present study, are
shown in Figure 7. The above two expressions of M, for small and large Reynolds numbers
have very similar trends as ¢ changes. The results of the present energy method with two
different parabolic velocity profiles [one of them contains the term with 3¢/(2 + ¢%)] are also
shown in Figure 7. From Table 7, Figure 7 and the above expressions, we see that the inertia
force coefficients M., from the present energy method (with both parabolic velocity profiles)
and from the study by San Andres & Vance have no big differences for different instan-
taneous eccentricity ratios.

From the above comparisons, the following six observations can be made for the long
model. (i) The only differences among the present squeeze film force equations due to the
three approximation methods and the two different velocity profiles are in the four constant
D; coefficients and the differences are generally not very big. (ii) Three of the four normal-
direction force coefficients (all but M_,) are exactly the same as El-Shafei & Crandall (1991)
(when the same D; factors are used). (iii) The variation of M, with ¢ is very similar to that
found by San Andres & Vance (1986), although it is very different from El-Shafei & Crandall
(1991), especially for 0. (iv) The tangential-direction viscous force coefficient is approximately
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Figure 7. Centripetal inertia force coefficient (M,,) for circular-centered motions for long model:
—[0—, El-Shafei & Crandall; —<—, San Andres & Vance for Re — c0; —A—, San Anders & Vance
for Re — 0 and present method with El-Shafei’s velocity profile; — + —, present method with present

parabolic velocity profile.

3 times larger than El-Shafei & Crandall’s as ¢ — 0, but becomes comparable for ¢>0.
(v) The two tangential-direction inertia force coefficients M}, and M., in the present model
show very different trends with ¢ compared to El-Shafei & Crandall; although they are
roughly comparable in size, in the present model they decrease as ¢ increases, whereas
El-Shafei & Crandall predicted the opposite trend. (vi) When the present energy method
and the parabolic velocity profile with 3¢/(2 + ¢?) is used, the inertia force coefficients
M., and M., show big differences from El-Shafei & Crandall (1991) as ¢ — 0, but become
similar for £>0.

The above discussion indicates that the normal force components in the long model show
quite good agreement with previous models. [ The centripetal term by El-Shafei & Crandall
(1991) appears to be inconsistent with both the present work and that of San Andres
& Vance (1986).] In contrast the present results for the tangential force terms are substan-
tially different from previous models.

The studies by El-Shafei & Crandall and those of San Andres & Vance are based on the
assumptions of small amplitude arbitrary or circular-centred motions, respectively. The
present effort aimed to include the large fluid inertia effects due to large amplitude cylinder
(journal) motions. The significant differences in the final force equations are due to the
different assumptions used in the derivation of the force equations. The present force
equations with the elliptical velocity profile should lead to more accurate results for high
squeeze Reynolds numbers, since when Re > 50 the parabolic velocity profile from
El-Shafei & Crandall (1991) has large differences from the real velocity profiles as demon-
strated by Han & Rogers (1996). To verify the accuracy of the present analytical models,
experimental tests and more theoretical work are needed.

4. CONCLUSIONS

Using three approximation methods and two velocity profiles, both short and long cylin-
drical squeeze film force models have been developed. The nonlinear force equations have
the same form for the two models.
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Comparisons with the existing models demonstrates that the force terms in the present
short cylindrical squeeze films are either exactly the same or have the same trends with
instantaneous eccentricity values. The differences resulting from different averaging
methods and velocity profiles are not very large.

Comparing the present expressions obtained using the present parabolic velocity profile
with existing models for long cylindrical squeeze films illustrates that: (i) the viscous,
unsteady inertia and convective inertia terms, acting in the normal direction, are essentially
the same as in other studies; (ii) the normal direction centripetal inertia term shows similar
variations with position as one published study, but very different from another study; and
(ii1) the three tangential direction force terms show variations with position which are very
different from a previous published study.

The higher unsteady inertia forces obtained using the iterative and energy approximation
methods, along with the elliptical velocity profiles, show that the new models include larger
inertia effects. The unsteady inertia force coefficients obtained using the elliptical velocity
profile is about 1-1-1-2 times higher than those obtained using El-Shafei & Crandall’s
parabolic velocity profile when either the iterative or energy approximation method is used.
The present models should predict more accurately the squeeze film forces acting between
tubes and their support plates in shell-and-tube heat exchangers.
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APPENDIX A: DERIVATION OF PRESSURE GRADIENTS FOR LONG MODELS
A.1. MOMENTUM METHOD

Considering that the three terms on the left-hand side of equation (7) are functions of y and
the fact that the squeeze film is very thin (h « R), an averaging procedure can be taken for the
three terms to solve the equation. Then, the equation is changed into

h 2
p ou du Ju ap 0%u
= — — — |dy=—— —. Al
hL(@r*“RaeJr“ay) YT T Ra0 ey (A1)
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Using equations (22) and (23) and taking into account that v, = 0h/0t and 0h/00 = esin 0,
we can then obtain dp/06 with the parabolic velocity profile
RZ

h

12pR?
5h?

6pR?

C? + 53

C2, (A2)

Similarly, using equations (18) and (21), dp/d0 with the elliptical velocity profile is

op SuR* v.  pR? 8pR> 1
Fy T o R ¥
2
4pR> 1
+ # [Az(l _ E,E,) — 3] c. (A3)

In the above equations,
Cl =ésin0 + éf(1 — 2cos0) + efy(1 — cos ) — ey sin 0,
C?=—vy., Cz=v’esind,

and v, and v, are defined in equations (11) and (15), respectively.

A.2. ITERATIVE METHOD

Rearranging the simplified Navier-Stokes equation (7) for the infinitely long cylindrical
squeeze film shown in Figure 1 for 0%u/dy?, we have

o*u 1 op ou ou ou

— === — —+v—| A4

3y /1|:R69+p<6t+“R60+v8y>:| (A4)
Since p is a function of 0 and ¢, after substituting equations (18) and (21) and equations (22)
and (23), respectively, into the above equation, solutions for u can be obtained by integrat-

ing the above equation twice with respect to y. To make the integration, the geometric
condition

y = h/2, ou/dy =0 (A5)
and the boundary condition
u=0, y=0 (A6)

are used.
The derived velocity distribution has to satisfy the continuity relationship for the
cylindrical squeeze film configuration

h Gdh
J udy=—f — R d6f = Ru,. (A7)
0 o dt

Substituting for the expressions for u into the above equation and making the integral

directly, we obtain dp/00 for the parabolic velocity profile

102pR?
35h?

54pR*
35k?

op 12uR?* | 6pR?

= 1_
20 B T s G

C? + Cs, (A8)
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and for the elliptical velocity profile

op 12,uR2 pR 5 . .
= ’ 342 — 10)E, + 3(4 — A} A%E,]C
o0 h3 Ue — ShB [( ) 2+ ( ) 4] t
pRZ 2 2 2 2
— a2 L GAT +14E; +3(47 — HA7E, + 244]C
pRZ[1  A° s o 23 ,
— 7| 10+ g (119 — 094%) + APEEu (oA — 11 ) |G (A9)
pR?

— g BAAPEL — 247y +2E2)]CF

2

R
p oz L6547 — 18 — ISAPESEy(4 — A7) — 154°]CF.

10h3

A.3. ENERGY METHOD

According to El-Shafei (1988), using an energy method, the Navier-Stokes equation is
multiplied by the circumferential flow velocity prior to integration across the film to obtain
the average circumferential pressure gradient. The equation for the energy method is

b j’;u(au/at)dy jo (0%u/oy*)dy [ u(u (u/R 00) + v(0u/dy))dy
R3O0~ P rudy foudy 7 foudy

. (A10)

Substituting equations (18) and (21) and equations (22) and (23), respectively, we again
find equation (AS8) for the parabolic velocity profile, and for the elliptical velocity profile

2 A A 2
op_ _16uR [51n< “)-1};—4“{ [AZ(l E,E,) — 1]01

00 B*h? A—1 B*h

pR? 1 3
- [2 <A2(1 _E,E,) — §> + 55 (a2 = 1547

+ A2E, (1542 — 12))]C?

RZ
+ % [E5(2 — 154%) + A2E,(154% — 12)]C2. (Al1)

A.4. GENERAL PRESSURE GRADIENT AND SQUEEZE F1LM FORCES

We can write the pressure gradient for each method as

op uR? pR?

R? R?
0= W P 5 ;

D;C? +

chtl h2 h3

D,Cj. (A12)
The effects of using a different approximation method or the elliptical or parabolic profiles
are entirely contained in the expressions for the constant coefficients, D;(i = 1-4). Values for
the D; coefficients are shown in Tables 1 and 2.

Squeeze film force equations (25) and (26) can be conveniently integrated
using the method of integration by parts. Treating the pressure far from the film edge as zero
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we have

2 4 3 3
FnZ—CIDIZ Fnlj—CzDzz ng_C3D3z F§J+C3D4Z FZ_J, (A13)
j=1 j j=1

ji= ji=1 1 J

i=
2 4 3 3
F,=CD;) Fij+ CyD,)Y Fy+ CiD3 Y, F5;—C3D, Y, Fy. (A14)
j=1 j=1 j=1 j=1

The geometric coefficients C; in the above equations are listed in Table 5. The force
components in the normal and tangential directions in the equations can be found in Han
(1997). For the limit of (0, 2x), through rearranging equations (A13) and (A14), we have
equations (27) and (28).

APPENDIX B: NOMENCLATURE

A shape factor of elliptical velocity profile (ratio of ellipse minor axis to h)
c radial clearance

C; geometry coefficients, i = 1, 2, 3

C, viscous (damping) force coefficient

D, R cylinder diameter and radius

D; constant force coefficients, i =1, 2, 3, 4

e amplitude of the cylinder sinusoidal motion

F squeeze film force on the cylinder

h instantaneous local squeeze film thickness

L cylinder length

M., centripetal inertia force coefficient

M., Coriolis inertia force coefficient

M., convective inertia force coefficient

M,, unsteady inertia force coefficient

p pressure in squeeze film

Pa pressure far from the film edge

De mid-plane pressure

Re squeeze film Reynolds number (Re = wc?/v)

u, v flow velocities in circumferential and radial directions
X, ),z moving coordinate directions (Figures 1 and 2)
X Y,Z fixed coordinate directions (Figures 1 and 2)

Y (1—¢)t?

& instantaneous eccentricity ratio e/c

0, ¢ angles (Figures 1 and 2)

u absolute fluid viscosity

v kinematic fluid viscosity

P fluid mass density

/1] instantaneous angle, angular velocity and acceleration of cylinder centre
w characteristic circular frequency
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